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The problem of the optimal control of oscillations using small control inputs is considered. It is assumed that in the first 
approximation of the averaging method there is no change in the slow phase vector. A second-order averaging scheme is developed, 
which enables the control problem to be solved over a time interval of length inversely proportional to the square of a small 
parameter, that is, over an "elongated time interval". Error estimates are obtained with respect to the phase trajectory, boundary 
condmons, functional, and control. Results are presented for a special case - a hnear-quadrat]c control problem with pe~a~dle 
coefficients. The control of the phase and amplitude of non-linear oscillating systems is considered in model examples. © 2005 
Elsevier Ltd. All rights reserved. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

The method of averaging [1, 2] is an effective tool for investigating weakly controllable oscillating systems 
[3]. However, some problems of dynamics and control often lead to a non-standard situation, in which 
the system of equations for the osculating variables has the form 

= 8X(t,  x)  + e2F(t, x, u), X( to)  = x °, lel < e 0 (1.1) 

where X and F are 2re-periodic piecewise continuous functions of the argument (time time) t, t > to, 
which are sufficiently smooth with respect to the phase nx-vector x and the control nu-vector u; they 
may also depend on the small parameter e, but, for brevity, this will not be indicated. The domains of 
admissible values x E D x and u e Du may be bounded or unbounded, open or (and) closed [1-3]. 

It is well known that in the first approximation of the averaging method, the evolution of the slow 
vector x is determined by the properties of the first term eX in system (1.1). There will be a significant 
change z~c = Ix-x°l  - 1, for a change At = t - to -- 1/~ in the argument, if the average (X)with respect 

0 to t of the function X does not vanish identically (and in that case (X ( t ,  x )) ¢ 0). Otherwise, Ax - 8 for 
A t -  1/e. 

Consider control system (1.1) with the condition (X) - 0. Simple estimates will then show that in the 
general case the variable x may experience a change sufficiently significant to be of interest over an 

elongated time interval At -- ~-.  The standard procedure of the averaging method is not applicable 
in such an interval; the situation demands a modified approach, which may be formulated and justified 
using the methods of multiscale expansions [4] or averaging [5]. Such a procedure has been presented 
and tested for a Cauchy problem [5] by solving meaningful problems of mechanics for the case of an 
uncontrollable system (1.1) in the case when u -- 0 ~ D,. It is also applicable if the control function 
u = u*(t ,  x) ,  2re-periodic with respect to t and smooth with respect to x E Dx, is known and given. 

We will give a brief outline of a scheme for constructing a solution to the first approximation (with 
error 0(8)) of degree two (over a time interval At -- U2). 
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The second-order averaging scheme in [5] prescribes a standard change of the variable x to y, which 
is almost identical [1-6], and reduction of the Cauchy problem (1.1) to a special form with the coefficient 
e 2 o n  the right-hand side of the equation fory: 

t 

x = y + eX°(t, y), X°(t, y) - ~X(s, y)ds, X°(t  + 2re, y) - X°(t, y) 

to 

~ = e Z Y ( t , y ) + e 3 W ( t , y ) ,  y(to) = x °, Y ~ D x  
i 

Y(t, y) =- Xy(t, y)X°(t ,  y) + F*(t,  y), F*(t, y) - F(t, y, u*(t, y)) 

(1.2) 

The functions Y and W are obtained in the standard way by differentiating the substitution (1.2) with 
respect to t with reference to Eq. (1.1) at F = F*. The very cumbersome expression for the function W 
in terms of X, X ° and F* will not be presented here. It is 2re-periodic with respect to t, sufficiently small 
and bounded as a function ofy  ~ Dx, and may be a continuous function of e. 

We will now consider the Cauchy problem (1.2) in the interval At -- U 2. It has been shown [5] that 
the evolution of the system is determined by a truncated averaged equation and an initial condition of 
the form 

~" = YO(~), ~('Co) = x°, I = g2t, A'C = X - x ° - l ,  Y o ( y ) - ( Y ( t , y ) )  (1.3) 

The dot denotes differentiation with respect to the slow argument ("time") "c. System (1.3) lends itself 
much more easily than (1.2) to an analytical and numerical treatment. It does not contain the time 
explicitly (is autonomous), and its solution { e Dx depends on A'c. Of course, it is assumed here that 
the function Y0({) is fairly easy to construct. 

It has been proved [5] that the solutions of the Cauchy problems (1.1)-(1.3) are t-close together over 
the relevant elongated time interval At N e-e: 

x(t, to, x °, e) - ~(Ax, x °) < eC; 

y(t, to, x °, e) - ~(Ax, x °) < eC; 

0 < At < LE -2, 

L, C = const 

x , y , ~  D x 
(1.4) 

The constant C may be determined effectively [5] using Gronwall's Lemma. 
The approximate solution { is improved in the standard way, using the procedure of the averaging 

method and the explicit expression for the function W. This approach, however, requires that the 
functions X and F* should be smooth to a higher order. Henceforth, we shall limit ourselves to 
constructing and investigating a solution ~ of the first approximation of degree two, that is, with an error 
O(e) over the elongated interval At -- UL 

The procedure to be described may be used in a natural way to find approximate solutions of optimal 
control problems for the motions of the oscillating system (1.1) which, within the context of the standard 
approach [3], is weakly controllable: Ax - e if At -- U 1 for bounded controls u, I u I N 1. We will consider 
formulations, of interest in an applied setting, of problems with an integral functional J over a fixed 
time interval t s [to, tf]: 

J[u]~min u, u ~  U 

I f  

J = Jl[u] =-g(x(tf)) + e2~G(t, x, u)dt (Problem 1) 

t o 
,, (1.5) 

g(x(tf)) = 0, J = J2[u]  = e2~G(t ,  x, u)dt, tf = O ( P r o b l e m  2) 
e 

to 

e2t0 = " % - 1  

where, in both problems, G is a scalar function, 2~t-periodic in t and sufficiently smooth in x and u. The 
2 coefficient e of the integrals in (1.5) is a normalization factor: if G - 1, the corresponding terms will also 

be quantities of the order of unity. The function g - a scalar in Problem 1 and an nz-vector in Problem 2 
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- characterizes the conditions imposed on the final values x(tf) of the phase vector and is assumed to 
be suffÉciently smooth. In particular, g defines the measure of the required value x(tf) = x f (where x f is 
given) 

T 
g - (x ( t f )  - x  f )  N t ( x ( t f )  --X f )  i n  Problem 1 

g =- N2(x( t f )  - X f)  in Problem 2 
(1.6) 

where N1 is an nx x nx (symmetric) matrix, assumed to be positive semi-definite and N2 is an n 2 × r/x 
matrix, where 1 ___ n2 --- nx; if n2 = nx and detN2 * 0, then by (1.6) the second condition in (1.5) takes the 
form x(tf) = xf, corresponding to a two-point control problem [3, 6]. 

Thus, we are going to consider optimal control problems (1.1), (1.5). Our aim will be to construct 
approximate solutions for which the errors in the trajectoryx and the functional J are at most O(e). A 
smooth (not bang-bang) control u must be constructed with error O(8) in an open-loop, Up(t), or 
feedback, Ux(t, x), form. In the case of a bang-bang control, an error should be defined in terms of an 
integral metric or a suitable functional [3]. 

2. A P P R O X I M A T E  S O L U T I O N  OF O P T I M A L  C O N T R O L  P R O B L E M S  

We shall use the necessary conditions for optimality in the form of the maximum principle [6] (the 
procedure will be analogous to what was done in [3]): 

H = e(X, p) + e2[(F, p) - G] -+ max w u e U 

u = u*(t, x, p), H* = £(X, p) + e2[(F*, p) - G*] 
(2.1) 

where H is the Hamiltonian of the control system (1.1), (1.5) andp is a variable (momentum) conjugate 
to the phase vector x. The function u*, defined by the maximum condition (2.1), is a 2re-periodic or 
periodically continuable function of t. Smoothness with respect to x andp is assumed in a certain domain 
(x, p )  ~ Dx x Dp; with respect to t, it is sufficient to assume piecewise smoothness or continuity [3]. 

The initial phase variable x and the momentump are found by solving the boundary-value problem 
of the maximum principle with conditions corresponding to (1.1), (1.5) at t = to, tf: 

= 8 X ( t , x )  + ~ 2 F * ( t , x ,  p) ,  X(to) = x 0 

_ ) ,  2 t , , - -  _ p = e ( X , p ,  e [ ( F , p ) . - G x ]  , t o < t < t  f = 0 8  -2 
(2.2) 

p(ty)  = -g'x(X(tf))  in Problem 1 

t ' g(x ( t f ) )  = O, p ( t f )  = (~.,g(x( f ) ) )x  in Problem 2 
(2.3) 

where )~ is an n2-vector of Lagrange multipliers, which are computed together with the 2nx integration 
constants of the Hamiltonian system (2.2). 

The investigation of boundary-value problems (2.2), (2.3) is obviously extremely difficult from both 
the analytical and numerical standpoints. 

Since the right-hand sides of Eqs (2.2) are periodic in t, one can apply a change-of-variables procedure 
analogous to (1.2), (1.3) (the averaging method). Since by assumption (X) - 0, it follows that, subject 
to the smoothness conditions, ((X, p)~) - 0. By a simultaneous change of variables (x, p)  -+ (y, q) of 
the form (1.2) 

0! 
x = y + eX°(t ,  y), p = q -  e(q, Xy  (t, y)) (2.4) 

one can reduce Eqs (2.2) to a form analogous to (1.3): 

~9 = E2y(t,  Y, q)  + e 3AY, 

0 = 8 2 Q ( / ,  Y, q) + E3AQ,  

Y = X'yX ° + F* 

" X "  g O" + o ' , , , Q = - - t q ,  y2 ) ( q , X  ) y - [ ( q , F ) y - G y ]  
(2.5) 
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Henceforth the terms O(e 3) in (2.5) will be omitted, since they lead to O(e) errors in the solution for 
At N e -2. This assumption is certainly valid if the functions Y and Q satisfy Lipschitz conditions, and 
AY and AQ are uniformly bounded in some domain y ~ Dx, q ~ Dp. The error is estimated using an 
integral inequality (Gronwall's Lemma). Note that the change of variables (2.4) and system (2.5) are 
not canonical. 

The approximate procedure of the averaging method consists in dropping O(e 3) perturbations and 
averaging the functions Y and Q over the explicitly occurring time t. This operation is analogous to the 
change of variables [5]. 

t 

Y = ~+e2I [y ( t ' , ~ , ' q ) -Yo (~ , r l ) ]d t ' ,  Yo = (Y) 

to 
, ( 2 . 6 )  

q = r l+eZI[Q( t ' ,~ , r l ) -Qo(~ , ' q ) ]  dr', Qo = (Q) 

to 

in Eqs (2.5) and dropping O(e 3) terms in the system of equations for ~ and 11. The result is an averaged 
system of equations that can be used to eliminate thecoefficient ez: 

~" = Y0(~,rl), 11" =Q0(~,rl), "c--e2t ,  x 0 < x < O  (2.7) 

The autonomous system (2.7) must be integrated over an interval in which the change in the slow 
time is of the order of unity, which significantly simplifies the computations. Note that, although the 
truncated system (2.5) is not Hamiltonian, the averaged system (2.7) is canonical, with Hamiltonian 

H0(~, 11, e) = e2h(~, rl), h --- (11, (X'~X ° + F*)) - (G*) (2.8) 

This property is established by constructing the canonical averaging scheme of the second approxi- 
mation with respect to e for system (2.2) [3]. It may also be obtained by a preliminary transformation, 
similar to (1.2), of the variable x in the initial optimal control problem (1.1), (1.5) (see below, formulae 
(2.12)-(2.14)). 

Thus, we can proceed to integrate - analytically or numerically - the system of canonical equations 
(2.7), which admits of an integral h = const (see (2.8)). The solution ~(x, x°,p°), rl('c, x° ,p °) corresponding 

0 to a family of Cauchy problems (p ~ Dp is an unknown parameter), provided that (~, 11) ~ Dx x Dp for 
"Co < "c < O, satisfies e-closeness conditions like (1.4) 

(Ix-~l + l p - T I I ) ~ f e ;  t o < t < O e  -2 

(ly-~l + lq -~ l ) -<ce ;  O,C = const 

0 0 Withx fixed, if a family of solutions ~, 11 depending on the parameterp has been constructed, then 
0 0 the unknownsp or (p ,  ~) defining the solutions of boundary-value Problems 1 and 2, respectively, are 

found from the system of finite equations 

11(O, x °, p0) = _q,x(~(O, x 0, p0)), p0 = p0(O ' x 0) in Problem 1 

g(~(O, x °, p0)) 0, 11(O, x °, p0) (~, g(~(O, x °, 0 , = = p ))x in Problem 2 (2.9) 

0 p =p°(O,x°) ,  ~ =  ~.(O,x °) 

0 0 It is assumed that the roots p or (p,  L) of Eq.s (2.9) have been determined and are simple, that is, 
the Jacobians of the implicit functions for the x u and O under consideration do not vanish for these 
values. Proceeding then as in [3], one can state the following 

Theorem. The solutions of boundary-value problems (2.2), (2.3) and (2.7), (2.9) are e-close together 
with respect to trajectories and boundary conditions. The stationary values of the functional J (1.5) will 
also be close together ifx and u are replaced by the following approximations 

x = ~(x, x °, pO), u = u*(t, ~,'q) (2.10) 



Method of averaging for the optimal control of non-linear oscillations 5 

We have 

[J[u*(t,x, p ) ] -  J[u*(t, ~, rl)][ < Ce 

If there are several rootsp ° or (p0,)Q, the selection criterion is the value of the functional J. The solutions 
of the exact and approximate problems will be close together with respect to controls if u* is uniformly 
smooth as a function ofx andp. 

Examples of such formulations are linear-quadratic problems whose coefficients are 2rc-periodi c 
functions of t, with no constraints on the control [3] (see Section 3 and the examples in Section 4)i The 
expressions for u* in (2.10) are 2~z-periodic functions of t and, in a certain way, of the slow argument 
"c = e2t, through the functions ~ and q. Fully expressed in terms of the arguments and parameters 
introduced above, these functions are an open-loop control Up and a feedback control us 

u* = Up(t, "C- Xo, O -  Xo, x°), t o < t < [~e -2 

U* = u , ( t ,  0, O- -  Z, X), t o ~ t < O E  - 2  
(2.11) 

Controls (2.11) have pronounced resonant properties with respect to the initial (fast) t imet [3]. 
The Hamiltonian system (2.2) may be dealt with by a canonical change of variables (x, p) --+ (y, q) 

[2, 3] instead of the standard type (2.4). As the construction of the generating function and the 
substitution formula is extremely laborious, the approach described in Section 1, involving the change 
of a variables (1.2), seems preferable. In the control problem, Eq. (1.1) is reduced to the form 

2 i = E Xy(t, y)X°(t ,  y) ÷ £2F(t,  y, u) + E3W(t, y, u) • (2.12) 

with corresponding transformations in the boundary conditions and functionals (1.5). In the first 
approximation with respect to e, they retain their old form, in which the variable x is replaced by y. 
Evaluating the scalar product of the right-hand side of Eq. (2.12) by the adjoint vector q, subtracting 
the function G(t,y, u) and maximizing With respect to u ~ U, one obtains in the first approximation an 
expression for u* which is identical with (2.1) but withx ---~y,p -+ q. Thus, the system with the function 

I H*(t, y, q, e) = e2(q, (Xy(t, y)X°(t, y) + F*(t, y, q))) -e2G*(t ,  y, q) 

F* = F( t , y ,u*) ,  G* = G( t ,y ,u*) ,  u* = u*( t , y ,q )  
(2.13) 

will be Hamiltonian. In the first approximation, the averaged Hamiltonian has the form (2.8): 

t 0 (O*) = E2h, h = (q, ((XyX) + (F*) ) ) -  (G*), h = const (2.14) 

It is constant along trajectories of the averaged system. In control problems for mechanical oscillating 
systems, explicit dependence of the function u* (2.1) on the time (or phase) t is achieved, as a rule, 
through the function F (1.1). The integrand G in (1.5) may not depend explicitly on t; this is usually 
the case in applications (see the examples in Section 4). 

The approach outlined above considerably extends the range of problems of dynamics and control 
for oscillating systems [3, 5] that can be handled by asymptotic methods. Together with the second-order 
averaging scheme, one can also consider higher-order schemes [5], in which the perturbations and 
controls are of significantly different orders of magnitude with respect to e. The problems are still of 
considerable interest from the standpoint of the application of asymptotic methods in the case when 
the functions F and G do not depend explicitly on the time t. By analogy with the approach outlined 
above, one can investigate problems in which the completion time tf of the control process is not fixed. 
In such cases the formulations of the problem must correspond to the interval At - E -2 under 
consideration. For example, in time-optimal control problems it is assumed that F N e2u, where the 
control u is confined to a bounded domain U. 

3. LINEARLY QUADRATIC OSCILLATION-CONTROL PROBLEMS 

Let us consider a linear analogue of control system (1.1), with appropriate boundary conditions and 
integral quadratic functionals J1, 2 (1 .5) ,  (1.6) of the form 
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N2(x-  x:)[,: = O, 

t o< t< t  f = Oe -2 

ic = e.A(t)x + e2[C(t)x + B(t)u], x ( t  o) = x °, lul < 

2tI 
1 x f ) rN , ( x - x / ) l t f+ ~[ .u rG( t )ud t  in Problem 1 Jl[u] = ~ ( x -  

to 
2tf 

= ---~[_urG(t)udt in Problem 2 J2[u]  
to 

(3.1) 

where G is a positive-definite (symmetric) nu × nu matrix and B is an nx x nu matrix. The matrices A, 
B, C and G are 2n-periodic functions of time. As in Sections 1 and 2, it is assumed that (A) = 0, that 
is, A°(t) is a 2n-periodic matrix. 

We will first use the approach of Section 1, which is exact with respect to powers of e and requires 
a preliminary vector transformation x ~ y. We again obtain linearly quadratic control problems 

t 
o 

x = [E+eA°(t)]y,  A ° A(t')dt', Y(to) = X(to) = x 
to 

p = E2Ce(t)y+g2Be(t)ul y f  = [E+EA°( t f ) ] - lx  f 

Ce(t ) = (E + eAO)-I(AA°+ C), Be(t) = (E + eA°)-IB (3.2) 

2ty 
J,[u] = " " ( y -  y ' ) r  N~l(y- y f  )l,i + 2 j u r  G(t)udt in Problem 1 

l0 
2ty 

N~2(y-y/)I,, = 0, J2[u] = 2SurG(t )udt  in Problem 2 

tO 

The matrices N] z are obtained by standard algebraic operations and depend on the parameters e 
and tf; moreover ~"], 2 = N1, 2 + O(~). 

Problems (3.2) will be dealt with by applying the necessary optimality conditions in the form of the 
maximum principle [3, 6]. By analogy with (2.1), we obtain exact expressions 

u = u*( t ,y ,q ,e . ) -G- l ( t )Br( t )q ,  H*e(t,y,q,e) = e.Zhe(t,y,q) 

1 r h e - q r c e ( t ) y  + ~q Re(t)q, Re(t) = Be(t)G-l(t)Bre(t ) 
(3.3) 

The linear boundary-value problems of the maximum principle corresponding to problem (3.2), in 
formulations that are exact in powers of ~, take the form 

= £2Ce(t)Y + E2Re(t)q, 0 = -e2C~(t)q 

q(tf) = -N~l(y(t f ) - y f )  in Problem 1 (3.4) 

N~2(y(tf)-yf)  = O, q(tf) = ~,rN~2 in Problem 2 

Equation (3.4) for the momentum q is integrated independently of the phase vectory. The approximate 
solution {, rl of the Hamiltonian system (3.4) over a time interval t N U 2 may be constructed to within 
a given accuracy in powers of e. To within O(e), it is described by the relations 
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~" = ( ( A A  °) + (C))~+ (BG-IBT)q  

0 
~('CO) = x ; 11 = - ( ( A A ° )  + (C--))II 

l l (O) = - N I ( ~ ( O ) - x  f )  in Problem 1 

(3.5) 

N 2 ( ~ ( O ) - x  f )  = 0, q ( O )  = )~rN 2 in P r o b l e m 2  

The dot denotes differentiation with respect to the slow time x = e2t; the variable (argument) x varies 
in the range e2to = ~o < z < 0 = e2tf. 

System (3.5), which has constant coefficients, is integrated by either algebraic or numerical methods. 
It admits of a first integral 

(ho) = rlr( (AA  °) + ( C) )~ + ~rlr (BrG-l  B)rl = const (3.6) 

Note that if the matrices A and A ° commute (in particular, if they are. diagonal), then (AA°) = 0. 
Indeed, by (3.2), we have 

1 d . 0 . 0 .  1 0 1 0 
72~t(A A ) = ~2AA +~2 A A = AA°(=A°A)  

which implies the assertion. The solution of problem (3.5) becomes elementary when (C) = 0, since 

= x°+ (Ro)rl(X-Xo),  1] = const (3.7) 

For the boundary conditions to be solvable, the matrices M1, 2 defined by 

M l = E + N t ( R o ) ( O - X o )  inProblem 1 

M2 = N ~ ( R o ) ( O - X o )  0 in Problem 2 (3.8) 
0 -N 2 

must be non-singular. By virtue of our assumptions, the matrix M 1 is symmetric and positive-definite, 
hence non-singular. The matrix 3//2 will also be invertible if det(NT(Ro}N2) ¢ 0, which is indeed assumed. 

A brief outline now follows of an averaging method of the second degree applied to the initial problems 
(3.1). Using relations (2.1), we obtain exact expressions for the optimal control u* and Hamiltonian H* 

u = u*(t,  x, p) = G- l ( t )Br( t )p ,  R(t)  = B( t )G- l ( t )Br( t )  
[ ~ ] (3.9) 

H*(t ,  x, p, e) = eprA( t ) x  + e 2 pTC(t )x  + pTR( t )p  

The boundary-value problems of the maximum principle are similar in form to (2.2) 

= e A x + e 2 ( C x + R p ) ,  x( t  o) = x °, P = - e A T p - e 2 C T p  

p( t f )  = - N  l ( x ( t f ) -  x f )  in Problem I (3.10) 

N 2 ( x ( t f ) - x  f )  = O, p ( t f )  = ~TN 2 in Problem 2 

Applying a transformation of type (2.4) to Hamiltonian system (3.10), one can eliminate the O(e) 
terms; this gives the expressions 

x = y + e A ° ( t ) y ,  p = q - e A ° r ( t ) q  

2 + = e C~y + e2(E + e A ° ) - t R ( E ,  eA°r)q  (3.11) 

± Co,Co Cl = -e2 C-erq, C~e = Co + 
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The ~ matrices C~(t) are obtained by standard operations in terms ofA(t); A°(t), C(t). As remarked 
in Section t, the change of variables (x, p)  ~ (y, q) is  not canonical, either in the exact sense or in case 
when terms O(e 3) in the equations are ignored. Thus, considering the first-approximation systems 
(excluding terms O(e3))corresponding to (3.4), (3.11), one obtains different representations, Equations 
(3.4) a re  Hamiltonian in any order of  approximation with respect to powers of e. The transformation 
and system (3.11), in contrast, are not canonical, because 

+ 

C O = AA ° + C  = C o , C o = - A ° A + C  

Averaging over t, however, one can prove that (C~-) = (Co), which is established by integrating the 
expressions AA ° or A°A by parts. An analogous Hamiltonian property of the averaged systems in the 
first approximation with respect to e was noted in Section 2 for the general case of non-linear functions 
X, F and G. 

4. E X A M P L E S  

We will now consider some model optimal control problems over an elongated time interval for 
oscillating systems with one degree of freedom. 

1. Control of  the phase of  the oscillation by parametric section. Based on the technique outlined in 
section 2. Let us investigate a system of the form 

0 .0 + O)2X = eW(X, ;~) + £2f(x ,  ~)U, X(0) = x , ~(0) = x (4.1) 

where ew is a perturbation, assumed henceforth to be of low frequency and e2fu is a control term, where 
the control u is to be determined. We may assume without loss of generality that the frequency to is 1, 
and reduce Eq. (4.1) to the form of a system with rotating phase 

0 0 
x = asin~l I, ~ = acos~/, a(0) = a , ~(0)  = ~1/ 

(~ = eA(a, lg) +e2K(a,~It)u, A = wcoslg, K = f c o s ~  (4.2) 

= l + e ~ ( a , ¥ ) + e Z A ( a ,  lll)u, ~P = -(w/a)s in~,  A = -(f /a)sinll t  

For simplicity, we set w = ya and f = ~ ,  where y and 13 are constants. As a result, the equation for 
in (4.2) is separated out and, after introduction of the slow variable q0 = ~ - t, may be reduced to 

the standard form 

• ~ = = e),sin(t + (p)- e2~usin2(t + (p), (p(0) = lip (4.3) 

We formulate a control problem of type (1.5) for system (4.3) 
t f  

l 2 l f u 2 d t  J l [u ]  = ~k(p (tf) + e21[u], l[u] 2J  (in Problem 1) 
. . . .  0 (4.4) 

~ ( t f ) = 0 ,  J2[u]=e2l[u] ,  t ; = e e - 2 ,  lul< oo ( i nP rob lem2)  

where k > 0 is a weighting factor in the functi0nal J1 of (4.4) and no further (e.g. geometrical) constraints 
are imposed on the control u. 

Applying the procedure described in Section 2 to the optimal control problem (4.3), (4.4), we obtain 
the control and averaged boundary-value problem in the first approximation as 

1 2 ~ 0 
u* =-~lr ls in2( t+~) ,  ~" = - i T  + v 1~21"1' ~(0) = ~t/ (4.5) 

where rl = const. The boundary conditions imply 

~ = k ( ~ / 2 e - ¥ ° ) ( 1  * ~k~i2e) - '  in Problem 1 

(4.6) 
~ k ~ - ' ) T I  " ~ o  ~-~O(4 2~ ~ ], TI =T l ' ,  / [ u ' ]  = ~0T1 ~ inPr°blem 2 g ~ / t ~ -  0 1~2 2~ 
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It follows from (4.5) that the amplitude of the control u* and the cost I of the control decrease as 13 
increases. The effect of the low-frequency noise w is independent of the sign of qt;, the noise may promote 
or obstruct the required variation of the phase correction % 

Besides the above formation, one might consider another, in which the quantities % q0 °, ~ = q0(tf) 
are defined modulo 2n, that is, q0 and q0 _ 2n are identified. Standard methods [3] may be used  to 
investigate the problems with additional constraints of the type [u I --- u0. 

2. Control o f  quasilinear oscillations. Consider the following non-linear system with one degree of 
freedom [6] 

.0 
~+O(z)  = - A £ + V ,  z(0) = z °, £(0) = z (4.7) 

where q5 is a non-linear increasing force, A is the coefficient of dissipation and V is the control. Let 
• (0) = 0, ~ ' (0)  = m ° > 0; the higher-order derivatives ~", ~" ,  ... may take arbitrary values at z 0. 
We shall characterize the deviations z by a small parameter e: z = ~s. Assuming that A and V are 
sufficiently small, we reduce system (4.7) in dimensionless time t* = cot (the asterisk will henceforth 
be omitted) to the form 

S'+S = EO~S2+F~2~S3-1?.2~S+F-.2U+I3 3...," s(O) = S O, ,~(0) = ,~0 

1 20,, 6 12Om V a = - (0), [3 = - '"(0) e~ = A 3 
20) , ~,  e u = -  0) 

(4 8) 

The variables s,~, the control u and the parameters s°,~ °, a, 13, X are assumed to be quantities of the 
same order of magnitude as unity. With the phase variables s, ~ replaced by Van der Pol osculating 
variables xl, x2, the equation of the controlled motion (4.8) may be reduced to the form of a standard 
system (1.1) in which 

s = x~cos t+x2s in t ,  g = - x ~ s i n t + x 2 c o s t  

X l =-ots2sint ,  Fj = - ( ~ s 3 - E ~ + u ) s i n t ,  X l ( 0 ) = s  ° (4.9) 

.0 X 2 = o~s2cost, F 2 = - - ( ~ S  3 -- XS + U)COSt, X2(0 ) = S 

Substituting the expressions from (4.9) for the variables s and J into the functions X/and Fi(i = 1, 2), 
it can be verified directly that Q(/) - 0 (i = 1, 2), that is, the control system satisfies the conditions of 
Sections 1 and 2. We can thus formulate and investigate specific optimal control problems of type (1.1), 
(1.5) for the system over an interval 0 < t < ®e -2. Such formulations may be either the build-up or 
extinction of oscillations Ix(tf) I <> Ix(0) l, or a simultaneous variation of amplitude and phase, that is, 
the components xl(tf) and x2(tf) must take given values. 

As a simpler problem, let us consider control of the oscillation amplitude. To that end, it is convenient 
to replace the variables Xz, x2 by "amplitude-phase" variables, using Bogolyubov's substitution [1-3] 

s = acos~,  ~ = -a s in~ t ,  a > 0  

0 gt = eXa(a , lit ) + 1~2Fa(a, Ill , u), a(0) = a = (S 02 + S02) 1/2 

2 
= l + e X v ( a , ~ ) + e  F v ( a , ~ , u ) ,  ~(0) = 0 [0,2n)  (4.10) 

X a = -ots2sin~, Fa = -(13s 3 -  Z~ + u)sin~ 

X q  = - ~ s 2 a - l c o s l l t ,  F v = - - ( ~ s 3 - - ) ~ + u ) a - l c o s l l l  

Substitute the expressions from (4.10) for the variables s andk into the functions Xa v, F,  v" If a = 0, 
the substitution is singular (the phase ~ is undefined); Hence, if a ~- 0, we have t0 api~ly accurate 
reasoning and then evaluate the relevant limits [3]. Note that for the averages with respect to ~, we 
have (Xa, v) = 0 for all a > O. 

We can formulate a problem of type (1.5) for system (4.10), in which the amplitude a i s assumed to 
vary in the required way 



10 L .D.  Akulenko 

2tf 

J,[u] = ~[a(t)-af]2+ 2Iu2dt ,  u~ U in P rob leml  

o 

2tf 

a(tf) = a y>_O, J2[u] = u2dt, tf = -5 in Problem 2 
o 

(4.11) 

Approximation solutions of the optimal control problems (4.10), (4.8) with error O(~) may be 
constructed quite simply, if the time argument t is replaced by the phase ~. Dividing h by ~t, we obtain 
an equation 

a' = 8Xa(a, ~) + e2[-Xa(a, ~)Xv(a, ~) + Fa(a, ~, u)], a ( ~  °) = a ° (4.12) 

with argument % ~0 < ~ < ~q. Here the final value of ~tf is unknown, but it may be shown to within a 
• 2 ~ - 2  . . . . . . .  relative error O(~ ) that .~f = ®e , which is admissible to within the reqmred accuracy. Thus, t may be 

replaced by ~ in expressions (4.11) and the scalar problem (4.12), (4.11) for the amplitude a can be 
investigated using a second-degree averaging scheme (see Sections 1 and 2). 

With no constraints on the control u of (2.1), we obtain u* = -p sin g, where p is the variable conjugate 
to a (the momentum). In the first approximation with respect to e, one obtains two-point boundary- 
value problems: 

~,=_~+n, 11'=-~, o=E2v; 
11(0) = - k ( ~ ( O ) - a  f) in Problem 1 

~ ( O )  = a f in Problem 2 

0 
~(00) = a 

(4.13) 

The prime denotes differentiation of the averaged amplitude ~ and momentum lq with respect to the 
slow phase 0. 

Solution of boundary-value problems (4.13) yields simple expressions for 11 = rh, 2 

k -1 
r l ,= k(a f -  a ° e x p ( - ~ ( O - . o ) ) ) ( e x p ~ ( O - 0 o ) +  ~ s h ~ ( O - 0 o )  ) e x p , ( 0 -  00) 

1"12 = ( a f - a ° e x p ( - ~ ( O - O o ) ) )  + z ( s h ~ ( O -  0o)) q (4.14) 

0 
0 X  ,2a exp( Oo,)+ sh  O Oo, 

where rl °, 2 are the values of 111, 2 at 0 = 00; they are expressed in terms of a °d and the parameters Z, k 
and ® - 00 by formulae (4.14). Note that as k ~ ~ the coefficients satisfy the relation rh ---) 112, and 
moreover {(®) ~ d for problem 1 (4.8). 

Substituting rll, 2 for p into the formula for the control u* we obtain constructions of the required 
open-loop and feedback controls, respectively 

up* = - q ( a  °, 0 - 0 o, O - 0o)sin ~ 

u~* = -rl(a,  0, O-0)s in~ t ,  0 = e2~ 

The analogous elementary techniques outlined in Section 2 may be used to construct solutions 
with additional constraints on the control u, such as u- < u < u +. After the boundary-value problems 
have been reduced to the form of (2.5), the investigation is continued along the lines of the procedure 
in [3]. 
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